A Large-Scale Bank of Organ Donor Bone Marrow and Matched Mesenchymal Stem Cells for Promoting Immunomodulation and Transplant Tolerance
B.H. Johnstone, F. Messner, G. Brandacher, and E.J. Woods
Frontiers in Immunology, (February 2021). DOI: 10.3389/fimmu.2021.622604
Summary: Induction of immune tolerance for solid organ and vascular composite allografts is the Holy Grail for transplantation medicine. This would obviate the need for life-long immunosuppression which is associated with serious adverse outcomes, such as infections, cancers, and renal failure. Currently the most promising means of tolerance induction is through establishing a mixed chimeric state by transplantation of donor hematopoietic stem cells; however, with the exception of living donor renal transplantation, the mixed chimerism approach has not achieved durable immune tolerance on a large scale in preclinical or clinical trials with other solid organs or vascular composite allotransplants (VCA). Ossium Health has established a bank of cryopreserved bone marrow (BM) to deal with this issue.
Identification and characterization of a large source of primary mesenchymal stem cells tightly adhered to bone surfaces of human vertebral body marrow cavities
B.H. Johnstone, H.M. Miller, M.R. Beck, D. Gu, S. Thirumala, M. LaFontaine, G. Brandacher, E.J. Woods
Cytotherapy, (July 2020). DOI: 10.1016/j.jcyt.2020.07.003
Summary: Therapeutic allogeneic mesenchymal stromal cells (MSCs) are currently in clinical trials to evaluate their effectiveness in treating many different indications. Eventual commercialization for broad distribution will require further improvements in manufacturing processes to economically manufacture MSCs at scales sufficient to satisfy projected demands. We have discovered that an abundant population of cells possessing all the hallmarks of MSCs is tightly associated with the vertebral body (VB) bone matrix and only liberated by proteolytic digestion. Here we demonstrate that these vertebral bone-adherent (vBA) MSCs possess all the International Society of Cell and Gene Therapy-defined characteristics (e.g., plastic adherence, surface marker expression and trilineage differentiation) of MSCs, and we have therefore termed them vBA-MSCs. We have established this as a novel and plentiful source of MSCs that will benefit the cell therapy market by overcoming manufacturing and regulatory inefficiencies due to donor-to-donor variability.
Ischemia considerations for the development of an organ and tissue donor derived bone marrow bank
E.J. Woods, A.M. Sherry, J.R. Woods, J.W. Hardin, M. LaFontaine, G. Brandacher, and B.H. Johnstone
Journal of Translational Medicine, (August 2020). DOI: 10.1186/s12967-020-02470-1
Summary: Deceased organ donors represent an untapped source of therapeutic bone marrow (BM) that can be recovered in 3–5 times the volume of that obtained from living donors, tested for quality, cryopreserved, and banked indefinitely for future on-demand use. A challenge for a future BM banking system will be to manage the prolonged ischemia times that are inevitable when bones procured at geographically-dispersed locations are shipped to distant facilities for processing. In this study, we: (a) quantify, under realistic field conditions, the relationship between ischemia time and the quality of hematopoietic stem and progenitor cells (HSPCs) derived from deceased-donor BM; (b) identify ischemia-time boundaries beyond which HSPC quality is adversely affected; (c) investigate whole-body cooling as a strategy for preserving cell quality; and (d) investigate processing experience as a variable affecting quality.